MANE-VU Technical Support Committee Update

OTC/MANE-VU Stakeholders Meeting: September 10, 2015 Hall of the States, Washington, DC

Overview

- 1. Updated Visibility Trends
- 2. Inventory/Modeling
- 3. Four-Factor Analysis
- 4. Contribution Analysis
- 5. CHP Workgroup

Visibility Trends in Brigantine, NJ (Worst 20%)

Visibility Trends in Lye Brook, VT (Worst 20%)

Visibility Trends in Acadia NP, ME (Worst 20%)

Inventories

Regional Haze Inventories

- > 2011 MARAMA Alpha 2
- > 2018 MARAMA Alpha 2 w/2018 EPA mobile
- > 2028 MARAMA Alpha 2 w/2025 EPA mobile
- Status:
 - > 2011 is complete
 - > 2018 is complete
 - > 2028
 - ERTAC EGU v2.3 is complete (may update to v2.4)
 - Draft EMF projections to 2028 are complete (review underway)
 - Need 2025 onroad/nonroad from EPA (expected October)

Modeling 2011 vs IMPROVE data

- Compare 24-hour average particulate speciation at IMPROVE sites with CMAQ annual 2011 simulation
- ▶ SO₄, NO₃, EC, OC, SOIL, SALT, CM (coarse mass)
- Mass and aerosol extinction (b_{ext})
- Reconstructed fine mass (RCFM) and particulate extinction based on "modified original" light extinction algorithms from the most recent IMPROVE annual report (Hand et al. 2011)

"Modified original" IMPROVE light extinction

- RCFM: ammonium sulfate + ammonium nitrate + lightabsorbing carbon (LAC) + particulate organic matter (POM) + soil + sea salt
 - $= 1.375 \times SO_4 + 1.29 \times NO_3 + EC + 1.8 \times OC + soil + 1.8 \times Cl^{-1}$
- b_{ext}: extinction due to ammonium sulfate + ammonium nitrate + light-absorbing carbon (LAC) + particulate organic matter (POM) + soil + sea salt + coarse mass (CM)
 - $= 1.375 \times 3xf(RH) \times SO_4 + 1.29 \times 3xf(RH) \times NO_3 + 10 \times EC + 1.8 \times 4 \times OC + soil + 1.7 \times f(RH)_{ss} \times 1.8 \times Cl^{-} + 0.6 \times CM$

f(RH) and $f(RH)_{ss}$ are site-specific growth factors for hygroscopic species SO₄, NO₃, and sea salt

Extinction due to ammonium sulfate

- Daily average observed vs predicted by season, all sites (top panel)
- Monthly median values with 10th%-ile to 90th%-ile ranges across all sites (bottom panel)
- Broken line is 1:1

	DJF	MAM	JJA	SON
MFB, %	-61.9	-67.0	-58.9	-48.3
MFE, %	69.4	75.8	68.4	63.2
MAGE , Mm ⁻¹	8.52	10.46	16.31	8.45

Extinction due to ammonium nitrate

- Daily average observed vs predicted by season, all sites (top panel)
- Monthly median values with 10th%-ile to 90th%-ile ranges across all sites (bottom panel)
- Broken line is 1:1

	DJF	MAM	JJA	SON
MFB, %	34.0	-40.9	-111.7	-41.1
MFE, %	84.4	101.7	128.7	100.1
MAGE , μg/m ³	11.72	4.87	1.80	4.01

Extinction due to LAC

- Daily average observed vs predicted by season, all sites (top panel)
- Monthly median values with 10th%-ile to 90th%-ile ranges across all sites (bottom panel)
- Broken line is 1:1

	DJF	MAM	JJA	SON
MFB, %	31.1	-13.1	-43.8	-8.4
MFE, %	59.8	62.7	55.7	53.3
MAGE , Mm ⁻¹	2.38	1.37	1.40	1.78

Total aerosol extinction

- Daily average observed vs predicted by season, all sites (top panel)
- Monthly median values with 10th%-ile to 90th%-ile ranges across all sites (bottom panel)
- Broken line is 1:1

	DJF	MAM	JJA	SON
MFB, %	-2.1	-48.8	-71.4	-37.3
MFE, %	49.7	64.3	74.2	54.8
MAGE , Mm ⁻¹	22.94	19.11	28.81	16.81

Modeling Summary

- 2011 Base Case Modeling is complete
- Results adhere to the model performance guidelines outlined by EPA
- Next Steps:
 - 1. Complete 2028 draft projections
 - 2. Model 2028 base case using draft inventory
 - 3. Conduct review process of 2028 modeling

4-Factor Inventory Overview

- Examined 2011 and 2018 Inventories
- Used
 - Onroad Mobile: EPA v1
 - ERTAC EGU: v2.3
 - Other Sectors: MARAMA Alpha 2
- Examined emission totals in MANE-VU
- Will be used to influence which sectors get examined in the 4-Factor Analysis

4-Factor Inventory: MANE- VU SO₂ (Annual Tons)

Top 10 Categories Ordered by 2011 Emissions

4-Factor Inventory: MANE-VU NO_X (Annual Tons)

Top 10 Categories Ordered by 2011 Emissions

4-Factor Next Steps

- Cost factor analysis on inventory sectors
- Documentation

Adjusted Q/d

- Paper is available on <u>otcair.org under meetings</u>.
 Accepting comments until October 9, 2015
- Workgroup conducted a Q/d analysis, adjusted by a meteorological factor for Class I sites
- Used the 2011 MARAMA alpha 2 emission inventory
- Relied on similar methodologies to the NESCAUM reports that looked at the 2002 & 2007 inventories
- Intended to inform the consultation process

Acadia $SO_2 Q/d$

Brigantine $SO_2 Q/d$

Great Gulf $SO_2 Q/d$

Lye Brook $SO_2 Q/d$

Moosehorn $SO_2 Q/d$

Regional Haze SIP Planning Schedule

Regional Activity	Steps	Timeframe
Training	Training	Complete
IMPROVE Data Analysis	Decisions on Methods	Complete
	2014 Data Availability	Available
	Calculations and QA	Fall of 2015
Inventory Development	2028 ERTAC EGU	Complete
	2011 EPA Modeling Inventory	Complete
	2028 EMF Projections of 2018	Fall 2015
Photo Chemical Modeling	2011 Met Modeling	Complete
	2011 Base Case Modeling	Complete
	2028 Base Case Modeling	Fall 2015
	2028 Control Modeling	Fall 2016
Contribution Assessment	Draft Q/d	Complete
	Final	Spring 2016
RPGS/4 Factor Analysis	Inventory Analysis of Sectors	Complete
	Cost Analysis	??
	167 Stack Review	Spring 2016
Consultation		

CHP Workgroup

- Accepting comments until October 9, 2015
- CHP, or cogeneration, is are systems that produce both heat and electricity
- Efficiencies:
 - Typical separated system: 45%
 - CHP: 80%
- Installations can increase local emissions of NO_X and SO_X, but do lead to reductions offsite through decreased electricity production
- Transmission losses are also decreased since electricity is now produced closer to user

Existing/Technical CHP Potential in MANE-VU

Based on report from ICF on national CHP Applications

LICF International. "Effect of a 30 Percent Investment Tax Credit on the Economic Market Potential for Combined Heat and Power." October 2010. Accessed October 29, 2014.

Existing/Technical CHP Potential in MANE-VU

National Distribution of CHP Potential by Size and Application

National Distribution of CHP Potential by Economic Scenario

11 ICF International. "Effect of a 30 Percent Investment Tax Credit on the Economic Market Potential for Combined Heat and Power." October 2010. Accessed October 29, 2014.

CHP Potential Scenarios

Looked at six scenarios

- 1. All technical potential
- 2. Only systems less than 5MW
- 3. Only systems 5MW and greater
- 4. 30% ITC
- 5. 10% ITC
- 6. 0% ITC

Methodology: Onsite

- Estimated distribution of unit sizes for each state's technical potential
- Calculated emission increases due to replacements
- Emission Rates Used:
 - ► SO_X: NY CHP Study
 - NO_X:

Unit Size	DE	NJ	Other States	
			Case 1	Case 2
<5 MW	State	State	RICE	OTC Stationary
	Reg.	Reg.	NESHAP	Generator M.R.
5 - 20 MW	Average of			
	1. OTC Additional NO _X Control Measures M.R.			
	2. Combustion Turbine NSPS			
> 20 MW	Combustion Turbine NSPS			

Methodology: Offsite

- Used ERTAC EGU
- CHP systems were aggregated together as "virtual" new power plants
- Assumptions:
 - Systems would replace generation in the NERC regions:
 - New England for CT, MA, NH, and VT
 - NY Upstate, NY City, and NY Long Island for NY
 - Reliability First Corporation East for DC, DE, MD, NJ, and PA
 - Transmission loss is average in Eastern Interconnection
 - CHP systems would replace coal generations, except in NY City and NY Long Island where it would be combine cycle

CHP Summary and Next Steps

Results

- CHP installations beneficial for SO₂ reductions
- OTC model rule must be implemented for CHP installations to be beneficial for NO_X reductions
- Small scale increases in CHP installations result minor NO_X increases

Next Steps

- Accepting comments until October 9, 2015 (Paper is available on <u>otcair.org under meetings</u>)
- Finalize draft of current paper
- Consider using a more advanced tool such as EPA's AVERT to better focus on marginal EGUs in the region rather than marginal units of one fuel type

Questions?

Acadia, ME 09/9/2015 10:15 AM

